Leaf Variegation of Thylakoid Formation1 Is Suppressed by Mutations of Specific σ-Factors in Arabidopsis.
نویسندگان
چکیده
Thylakoid Formation1 (THF1) has been shown to play roles in chloroplast development, resistance to excessive light, and chlorophyll degradation in Arabidopsis (Arabidopsis thaliana). To elucidate mechanisms underlying THF1-regulated chloroplast development, we mutagenized thf1 seeds with ethyl methanesulfonate and screened second-site recessive mutations that suppress its leaf variegation phenotype. Here, we characterized a unique suppressor line, 42-6, which displays a leaf virescent phenotype. Map-based cloning and genetic complementation results showed that thf1 variegation was suppressed by a mutation in σ-FACTOR6 (SIG6), which is a plastid transcription factor specifically controlling gene expression through the plastid-encoded RNA polymerase. Northern-blot analysis revealed that plastid gene expression was down-regulated in not only 42-6 and sig6 but also, thf1 at the early stage of chloroplast development. Interestingly, mutations in SIG2 but not in other σ-factors also suppressed thf1 leaf variegation. Furthermore, we found that leaf variegation of thf1 and var2 could be suppressed by several virescent mutations, including yellow seedling1, brz-insensitive-pale green2, and nitric oxide-associated protein1, indicating that virescent mutations suppress leaf variegation. Taken together, our results provide unique insights into thf1-mediated leaf variegation, which might be triggered by defects in plastid gene transcription.
منابع مشابه
The balance between protein synthesis and degradation in chloroplasts determines leaf variegation in Arabidopsis yellow variegated mutants.
An Arabidopsis thaliana leaf-variegated mutant yellow variegated2 (var2) results from loss of FtsH2, a major component of the chloroplast FtsH complex. FtsH is an ATP-dependent metalloprotease in thylakoid membranes and degrades several chloroplastic proteins. To understand the role of proteolysis by FtsH and mechanisms leading to leaf variegation, we characterized the second-site recessive mut...
متن کاملMutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis.
The Arabidopsis var2 variegation mutant defines a nuclear gene for a chloroplast FtsH metalloprotease. Leaf variegation is expressed only in homozygous recessive plants. The cells in the green leaf sectors of this mutant contain morphologically normal chloroplasts, whereas cells in the white sectors contain abnormal plastids lacking organized lamellar structures. var2 mutants are hypersusceptib...
متن کاملDeletion of the chloroplast-localized Thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves.
Development of thylakoid membranes depends upon the transport of membrane vesicles from the chloroplast inner envelope and subsequent fusion of vesicles within the interior of the plastid. The Arabidopsis (Arabidopsis thaliana) Thylakoid formation1 (Thf1) gene product is shown here to control an important step required for the normal organization of these vesicles into mature thylakoid stacks a...
متن کاملThe FtsH protease heterocomplex in Arabidopsis: dispensability of type-B protease activity for proper chloroplast development.
FtsH is an ATP-dependent metalloprotease present as a hexameric heterocomplex in thylakoid membranes. Encoded in the Arabidopsis thaliana YELLOW VARIEGATED2 (VAR2) locus, FtsH2 is one isoform among major Type A (FtsH1/5) and Type B (FtsH2/8) isomers. Mutants lacking FtsH2 (var2) and FtsH5 (var1) are characterized by a typical leaf-variegated phenotype. The functional importance of the catalytic...
متن کاملHSP90C interacts with PsbO1 and facilitates its thylakoid distribution from chloroplast stroma in Arabidopsis
Arabidopsis plastidic HSP90C is an HSP90 family molecular chaperone that is required for chloroplast development and function. To understand the mechanism of action of HSP90C within the chloroplast, we conducted a yeast two-hybrid screening and revealed it interacts directly with the photosystem II extrinsic protein PsbO1, which performs a canonical function in the thylakoid lumen. To understan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 168 3 شماره
صفحات -
تاریخ انتشار 2015